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Abstract

The Cape mountain zebra (Equus zebra zebra) is a subspecies of mountain zebra endemic

to South Africa. The Cape mountain zebra experienced near extinction in the early 1900’s

and their numbers have since recovered to more than 4,800 individuals. However, there are

still threats to their long-term persistence. A previous study reported that Cape mountain

zebra had low genetic diversity in three relict populations and that urgent conservation man-

agement actions were needed to mitigate the risk of further loss. As these suggestions went

largely unheeded, we undertook the present study, fifteen years later to determine the

impact of management on genetic diversity in three key populations. Our results show a

substantial loss of heterozygosity across the Cape mountain zebra populations studied. The

most severe losses occurred at De Hoop Nature Reserve where expected heterozygosity

reduced by 22.85% from 0.385 to 0.297. This is alarming, as the De Hoop Nature Reserve

was previously identified as the most genetically diverse population owing to its founders

originating from two of the three remaining relict stocks. Furthermore, we observed a com-

plete loss of multiple private alleles from all populations, and a related reduction in genetic

structure across the subspecies. These losses could lead to inbreeding depression and

reduce the evolutionary potential of the Cape mountain zebra. We recommend immediate

implementation of evidence-based genetic management and monitoring to prevent further

losses, which could jeopardise the long term survival of Cape mountain zebra, especially in

the face of habitat and climate change and emerging diseases.
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Introduction

The Cape mountain zebra (CMZ, Equus zebra zebra) provides a useful case study to help

understand and advance the usefulness of genetic tools and monitoring for biodiversity con-

servation. The Cape mountain zebra is a subspecies of mountain zebra that is endemic to

South Africa. The subspecies is listed as Vulnerable on the International Union for Conserva-

tion of Nature (IUCN) Red List [1] and on Appendix II by the Convention on International

Trade in Endangered Species (CITES; [2, 3]). Historically, Cape mountain zebra had a wide-

spread distribution in the mountainous Fynbos, Karoo, and grassland regions of the Western

Cape, the Eastern Cape and portions of the Northern Cape Provinces of South Africa [4, 5, 6].

However, by the 1950’s, as a direct result of hunting pressure and habitat loss, CMZ experi-

enced a 90% reduction in its geographic distribution and were reduced to less than 50 individ-

uals in a few relict populations, inhabiting the most inaccessible parts of the subspecies’ range

[1, 7, 8]. Only three relict populations survived to the present day, and these are found in the

Mountain Zebra National Park (MZNP) located near the town of Cradock in the Eastern

Cape, and Kammanassie National Reserve (KNR) and Gamkaberg National Reserve (GNR) in

the Klein Karoo region of the Western Cape.

Following historical decline, CMZ numbers have since recovered to an estimated 2,650

individuals within the historical range [9,6], due mainly to dedicated conservation efforts by

the South African National Parks (SANParks), who are the custodians of the MZNP. The low

proportion of habitat that contains palatable grasses such as Themeda trinadra is one of the

main limiting factors to CMZ growth in many of the current populations [10, 11, 12]. There-

fore, SANParks employed a range expansion strategy, where “excess” MZNP stock was used to

seed several other populations within the former CMZ range including: Baviaanskloof Nature

Reserve, Karoo National Park, Camdeboo National Park, Tankwa Karoo National Park, Bonte-

bok National Park, Oorlogskloof Nature Reserve, DeHoop Nature Reserve (DHNR); and out-

side its natural distribution range including: Addo Elephant National Park, Table Mountain

National Park, West Coast National Park, Commando Drift Nature Reserve, Tsolwana Nature

Reserve and Gariep Dam Nature Reserve. In addition, approximately 1,500 CMZ are reported

to occur on private reserves [8]. The populations of MZNP-derived CMZ in South Africa have

steadily increased and the estimated number of mature individuals in protected areas has

exceeded the threshold of 1,000 for more than five years, resulting in a regional IUCN Red

Listing of Least Concern [6].

In contrast, to the SANParks approach, CapeNature, the authority managing the remaining

relict populations at KNR and GNR, has historically opted for a more conservative approach,

citing low population numbers and lower growth rates as reasons not to remove animals from

their reserves to establish populations elsewhere. The only exception to this rule was the popu-

lation at DHNR, founded from a mix of MZNP and KNR individuals in the 1960s and 1970s.

Thus, despite KNR and GNR containing a large proportion of the CMZ’s historic genetic vari-

ation [7], they remain isolated and at critically low numbers.

Genetic factors likely influencing the persistence of CMZ have been previously reported.

Moodley and Harley [7] indicated that individual CMZ populations exhibited low genetic vari-

ation. The three relic CMZ sub-populations (MZNP, KNR and GNR) were inbred with the

lowest microsatellite heterozygosity being identified in KNR (He = 0.239). In sharp contrast,

the only known mixed population at DHNR had the highest genetic diversity (He = 0.380, [7]).

However, the overall genetic variation in the metapopulation (populations from National

South African Reserves) was considered moderate because substantial remnant allelic variation

existed in the subspecies [7]. Inbred populations of CMZ with low genetic diversity show an

increased incidence of tumours due to equine sarcoidosis which is reported to manifest from
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complex interactions between the aetiologic agent, the environment and the host genome. [13,

14, 15]. In addition, the two relict CMZ populations (GNR and KNR) further exhibited

inflated genetic differentiation due to genetic drift and inbreeding effects resulting from lack

of dispersal [7].

To manage and monitor the evolutionary potential of the CMZ metapopulation, a Biodiver-

sity Management Plan (BMP) for this species in South Africa was developed by various stake-

holders. The purpose of the BMP is to ensure the long term survival of CMZ in nature, using a

strategy underpinned by specific goals and objectives aimed at addressing the threats faced by

this subspecies, such as population fragmentation, disease, inbreeding, hybridization with

plains zebra and habitat loss [6, 9]. It was suggested by several authors [6, 7, 8, 15, 16, 17] that

mixing of aboriginal populations is required to further reduce genetic diversity losses, espe-

cially considering that only populations descending from MZNP stock are experiencing high

population growth whereas KNR and GNR are not.

However, it was recommended that introductions into either KNR and/or GNR popula-

tions be avoided due to the observed population structure, and mixing should only be consid-

ered at alternative locations which would be monitored. These plans were hindered, however,

by recent ecological studies that suggested CMZ numbers in the GNR were too low to risk

removal of individuals to seed mixed populations [18, 19], despite the high diversity reported

for the mixed DHNR population. Currently, an estimated 40 mountain zebra are being

removed from the MZNP for the purpose of re-establishing a breeding herd within the histori-

cal range as well as stocking private reserves with animals, both within and outside the natural

distribution range. To date, Cape mountain zebra occur in more than 75 localities, including

over 30 national parks. Population sizes are estimated to vary between 4 and 1,191 individuals,

with the largest population found in the MZNP. The average annual population increase for

the subspecies over the period 2009–2015 was 11% [8].

Although the CMZ metapopulation continues to grow, it is yet to be determined whether

management strategies have affected genetic diversity over time. Thus, this study aims to

investigate temporal changes in genetic diversity in three key CMZ subpopulations by compar-

ing present day (2015–2016) levels with those of samples collected from 1999 to 2001 [7]. This

represents a time span of approximately 15 years or approximately 1.5 generations [20, 6].

Genetic diversity within populations can only be expected to increase through gene flow

between relict stocks (e.g., as in DHNR) or new mutations, with the latter considered inconse-

quential in the timescale involved. Natural selection is unlikely to increase diversity except at

individual loci under balancing selection. Given that our survey is only across a single genera-

tion, and there has been no gene flow between relict stocks during this time, we do not expect

diversity to have increased over the study period.

However, diversity may be maintained in larger populations experiencing rapid growth.

Therefore, we expect that within one generation, populations with larger size and high growth

rates (e.g., MZNP) should maintain diversity, whereas populations with lower growth (e.g.,

DHNR), and smaller size (KNR), would be expected to show a loss in genetic diversity. Fur-

thermore, changes in genetic diversity such as loss of heterozygosity and rare alleles may also

have consequences for how populations are structured relative to each other. The loss of shared

alleles from populations would be expected to inflate genetic structure (differentiation), as

seen in Moodley and Harley [7], whereas a loss of private alleles would reduce genetic differen-

tiation, making populations appear more similar. The results of this study will be used to

inform management strategies employed by the CMZ BMP, by providing additional data on

population diversity and differentiation.
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Methods

Ethical approval and sample collection

Ethical approval was obtained from the Research Ethics and Scientific Committee (RESC) of

the National Zoological Garden, South African National Biodiversity Institute (NZG SANBI,

NZG/RES/P17/19), as well as the Animal Ethics Committee of University of the Free State

(UFS-AED2017/0011). Permission was also obtained from the Department Agriculture For-

estry and Fisheries of South Africa under Section 20 of the Animal Disease Act 1984 with (Ref:

12/11/1/1/8). The CMZ were chemically immobilised by helicopter. The dosages of sedation

and reversal drugs as well as administration were carried out by a qualified, licensed veterinar-

ian, registered with the South African Veterinary Council. Whole blood samples (5 ml) were

collected by a qualified veterinarian from the MZNP (n = 75) and DHNR (n = 27) in 2016 and

four samples were obtained from KNR in 2015. In addition, this study includes samples from

MZNP (n = 12), DHNR (n = 15) and KNR (n = 9) collected between 1999 and 2001 [7]. Thus,

a total of 142 samples were analysed. Samples were stored at -20˚C in the Biobank of the NZG,

SANBI until used.

Molecular methods

We extracted DNA using the Quick-DNA Universal kit (Zymo Research) following the manu-

facturer’s protocol for blood. We selected 14 cross-species microsatellite markers (AHT21,

UCDEQ505, HTG3, HTG7, HTG9, HTG11, HTG14, HTG15, LEX20, LEX52, TKY273,

VHL47, HMB1 and COR014) used in the study conducted by Moodley and Harley, (2005).

Polymerase Chain Reaction (PCR) amplification was conducted in a 12.5 μl reaction volume

consisting of Ampliqon Taq DNA Polymerase Master Mix RED, forward and reverse primers

(0.5 μM each), and 50 ng genomic DNA template. The conditions for PCR amplification were

as follows: 5 min at 95˚C denaturation, 30 cycles for 30 sec at 95˚C, 30 sec at 55–60˚C (depend-

ing on the marker amplified, S1 Table), and 30 sec at 72˚C, followed by extension at 72˚C for

40 min in a T100 Thermal Cycler (Bio-Rad Laboratories, Inc.). PCR products were run against

a Genescan 500 LIZ internal size standard on an ABI 3130 Genetic Analyzer (Applied Biosys-

tems Inc.). Samples were genotyped using GeneMapper v. 4.0 software (Applied Biosystems

Inc.).

Genetic variation

MICRO-CHECKER software [21] was used to detect possible genotyping errors, allele drop-

out, and null alleles. Allelic richness (Ar), was estimated correcting for sample size through rar-

efaction using HP-RARE v. June-6-2006 [22]. Allele Frequencies, observed Heterozygosity

(Ho) and expected heterozygosity (He) and number of private alleles per population was calcu-

lated using GenAlEx 6.5 [23, 24]. To determine the significance of changes (He or Ar) between

the two time periods, a one tailed pairwise T-test (α = 0.05 and α = 0.1) was performed with a

null hypothesis that no loss in diversity has occurred. Deviations from expected Hardy-Wein-

berg (HW) proportions were tested (Markov Chain length of 105 and 100,000 dememorization

steps). We also tested for gametic disequilibrium between all pairs of loci using the exact test

described by Guo and Thompson [25] in GenAlEx 6.5.

Bottleneck simulations

The programme Bottleneck version 1.2.02 [26] was used to detect evidence of recent popula-

tion bottlenecks. This programme measures significant differences between the measured

expected heterozygosity (He; i.e., gene diversity) and the theoretical expected heterozygosity
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assuming mutation-drift equilibrium (Heq) given the sample size and observed number of

alleles (A). This test identifies populations that have recently undergone a decline in effective

population size (Ne), resulting in a heterozygosity excess and deficit of rare alleles [27]. It was

suggested that, through testing for bottlenecks using heterozygosity excess, a population size

reductions of ~50 Ne, occurring approximately 25–250 generations ago can be detected [27].

Previously recommended parameters for microsatellite data, using the two-phase mutation

model, were used [28, 27]. This model accommodates for a small proportion of multiple-step

mutations, with most mutations being a single step change in allele length. We used two differ-

ent mutation models including 95% and 80% single-step mutations (SMM) with a two-phase

model variance of 12% for a total of 10,000 iterations [29]. Heterozygosity excess was tested for

using the Wilcoxon sign-rank test (Significance at α = 0.05) [30]. Allelic frequency, mode-shift

deviation from the L-shaped distribution was examined, which was to corroborate detection of

a recent bottleneck event [31].

Effective population size (Ne) estimation

The two-sample temporal method [32, 33, 34] was applied to estimate the variance effective

population size (NeV). This method assumes temporal changes in allele frequencies are caused

solely by genetic drift, based on the Wright Fisher model [35, 36]. The standardized variance

in allele frequency was calculated using two moment based F-statistic estimators, namely Fs

[37] and Fc [34] under the model that assumes animals sampled will contribute to future gen-

erations. This was implemented using the program NeEstimator v2.1 [38]. This analysis was

performed using population samples from MZNP which consisted of adults and foals. The

KNR and DHNR were omitted from this analysis due to the small sample size and the recent

admixture.

Genetic structure

Since changes in genetic diversity can also affect genetic structure, we determined the relative

structure (differentiation) among our three sampled populations at the time periods 1999–

2001 and 2015–2016 using three methods. First, we used the Principal Component Analysis

(PCA), which is a multivariate method using K-means clustering, and implemented in the R

package Adegenet version 2.1.1 [39]. We then used the model based Bayesian clustering algo-

rithm in STRUCTURE version 2.3.4 [40], which determines the most probable number of

populations and assigns individuals to their most likely population of origin.

We ran STRUCTURE with the following models: admixture model with both correlated

and independent allele frequencies and no admixture model with correlated and independent

allele frequencies. Each of the models were run without prior population information for ten

replicates each with K = 1–10, with a run-length of 700,000 Markov Chain Monte Carlo repeti-

tions, following a burn-in period of 200,000 iterations. The ten values for the estimated log-

likelihood (ln(Pr(X|K)) were averaged across runs and posterior probabilities were calculated.

The K with the greatest increase in posterior probability (ΔK, [41]) was identified as the opti-

mum number of sub-populations using STRUCTURE HARVESTER [42]. The membership

coefficient matrices (Q-matrices) of replicate runs for the optimum number of sub-popula-

tions was combined using CLUMPP version 1.1.2 [43] with the FullSearch algorithm and G0

pairwise matrix similarity statistics. The results were visualized using DISTRUCT version 1.1

[44]. Lastly, we used an Fst-based hierarchical analysis of molecular variance (AMOVA, [45])

to estimate how genetic diversity was partitioned between and within the MZNP and KNR

populations for both time periods (Arlequin 3.5; [46]). We excluded the DHNR population for

this particular analysis as it is descended from a mix of MZNP and KNR.

Temporal changes in genetic diversity of Cape mountain zebra

PLOS ONE | https://doi.org/10.1371/journal.pone.0220331 July 31, 2019 5 / 14

https://doi.org/10.1371/journal.pone.0220331


Results

Genetic variation in different populations and time periods

Deviations from HW proportions, following Bonferroni correction [47], were only observed

in two loci from two populations namely: COR014 (MZNP, DHNR, 2015–2016) and

UCDEQ505 (DHNR, 2015–2016). One locus, COR014, showed evidence of null alleles in the

MZNP population at both time periods. The locus, UCDEQ505 showed evidence of null alleles

in one population at one time period (2015–2016) according to the MICRO-CHECKER results

(S2 Table). Thus, all further analysis was performed with and without the marker COR14. The

KNR 2015–2016 population was not tested for null-alleles due to insufficient sample size. Sig-

nificant gametic disequilibrium was not observed between loci in any population. The mark-

ers, HTG15, LEX52 and HTG03 were monomorphic in all CMZ samples for both time periods

and were omitted from further analysis. Analysis of microsatellite data identified low to mod-

erate genetic diversity (1999–2001: He = 0.511 and 2015–2016: He = 0.338) in CMZ popula-

tions from both time periods (S3 Table) compared to those reported for plains zebra (Equus
quagga; He ranged from 0.71 to 0.80) [48]. In the 1999–2001 population, the Ar was 2.069, the

average Ho was 0.327 (range of 0.115 to 0.531) and the average He was 0.503 (range of 0.356 to

0.720). In the 2015–2016 population, the Ar was 1.86, the average Ho was 0.274 (range of 0.061

to 0.621) and the average He was 0.337 (range of 0.119 to 0.627).

Genetic diversity and effective size (Ne): temporal changes within

populations

Analysis per population indicated that the highest heterozygosity and Ar was observed for the

DHNR population at both temporal periods compared to the MZNP and KNR populations

(Table 1). Heterozygosity within each reserve (KNR, DHNR and MZNP) declined between

temporal sampling periods (Table 1). A decline in genetic diversity was observed for DHNR in

Ar, which decreased from 2.35 to 2.1 between 2015–2016 and 1999–2001. He declined from

0.385 to 0.297 during this same ~16 year time period. In the MZNP population, the mean Ar

declined from 1.65 to 1.53 and He was reduced from 0.264 to 0.230. In the KNR population Ar

decreased from 1.59 to 1.53 and He declined from 0.258 to 0.230 (Table 1). However, only the

decline in He in DHNR was observed to be statistically significant (p> 0.05). The number of

private alleles for KNR, MZNP and DHNR in 1999–2001 was 0.143, 0.357 and 0.071 respec-

tively, whereas the frequency of private alleles in these populations in 2015–2016 was 0.0 (Fig

1). The temporal variance estimates of Ne ranged from 1.7 to 6 when performing Fc analysis

and varied from 1.7 to 18.2 when performing Fs analysis (Table 2). Analysis where the locus

COR014 was removed was similar for Fc analysis but differed for Fs (1.6 to 31.2, Table 2).

Bottleneck tests

The bottleneck tests were only carried out on the MZNP, for the two temporal periods. Similar

results were obtained for both 80% and 95% SMM (Table 1). The DHNR population was not

tested as the heterozygote excess method assumes that no recent admixture has taken place in

KNR, and the sample size was too low. No significant heterozygote excess was detected for

MZNP (p > 0.10).

Genetic structure

Principal component analysis (PCA) revealed a clear separation between MZNP and KNR for

both the 1999–2001 and 2015–2016 time periods (Fig 2). The position of DHNR was interme-

diate in the multivariate space between the two relict populations. However, in the 1999–2001

Temporal changes in genetic diversity of Cape mountain zebra
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dataset, DHNR appeared closer to the MZNP population, whereas in 2015–2016 it was closer

to KNR. In general, populations in 2015–2016 appeared more closely related to each other

than in 1999–2001 (Fig 2). Similar results were obtained for STRUCTURE analysis with and

without admixture, supporting the occurrence of two distinct genetic clusters (K = 2, Fig 3 and

S1 Fig).

In both time periods, MZNP and KNR were assigned to two distinct clusters with high indi-

vidual coefficient of membership (qi) for 1999–2001 MZNP qi = 0.9639; 2015–2016 MZNP

qi = 0.8465 and for the 1999–2001 KNR qi = 0.9715; 2015–2016 KNR qi = 0.9783. The 1999–

2001 DHNR population indicated an approximately 50:50 mixed ancestry with qiMZNP =

0.5313 and qiKNR = 0.4687 (Fig 3A), while the 2015–2016 DHNR populations were clustered

mainly with KNR (qi = 0.9048, Fig 3B). Analysis of Molecular Variance (AMOVA) (Table 3)

Table 1. Genetic diversity at the two time points for the Cape mountain zebra in the three reserves, Mountain zebra National Park (MZNP), De Hoop Nature

Reserve (DHNR) and Kammanassie Nature Reserve (KNR). Population genetic diversity over for two periods spanning around 16 years (1999–2001 to 2015–2016) was

evaluated based on allelic richness (Ar), observed heterozygosity (Ho) as well as unbiased expected Heterozygosity (He) and fixation (FIS) across 11 polymorphic microsatel-

lite loci. Detection of recent bottlenecks were tested by identifying whether Mountain Zebra National Park had significant levels of heterozygous excess using the Two

Phase Mutation model (Wilcoxon PTPM and PSMM) and then confirmed by checking allelic mode shift at mutation-drift equilibrium (ADIST). � and bold text = significant

temporal change, p< 0.05. 1indicates estimates of Ar are corrected for sample size through rarefaction in HP-RARE using the smallest number of gene copies per popula-

tion (MZNP = 14, DHNR = 24, KNR = 4) and 2indicates were analysis was not applicable, since sample size was too small for KNR and in DHNR, the population is an

admixture of MZNP and KNR.

Reserve Period Sample size Ar
1 (SE) Ho(SE) He(SE) FIS(SE) Wilcoxon PTPM Wilcoxon PSMM ADIST

MZNP 1999–2001 12 2.27(0.33) 0.167(0.07) 0.264(0.09) 0.383(0.09) 0.922 0.922 NA2

2015–2016 75 1.95(0.33) 0.221(0.07) 0.230(0.07) 0.076(0.05) 0.615 0.688 Normal

DHNR 1999–2001 15 2.35(0.21) 0.394(0.07) 0.385(0.05) -0.011(0.10) NA2 NA2 NA2

2015–2016 27 2.1(0.21) 0.266(0.07) 0.297(0.07)� 0.042(0.10) NA2 NA2 NA2

KNR 1999–2001 9 1.59(0.12) 0.205(0.07) 0.258(0.07) 0.126(0.13) NA2 NA2 NA2

2015–2016 4 1.53(0.12) 0.218(0.10) 0.230(0.09) -0.080(0.12) NA2 NA2 NA2

https://doi.org/10.1371/journal.pone.0220331.t001

Fig 1. Loss of private alleles (red) in a single generation from 1999/2001 to 2015/2016 in each of three Cape mountain zebra populations. White indicates the

frequency of private alleles unique to a population, grey indicates the frequency of locally common alleles (frequency of< = 5%), black indicates the frequency of locally

common alleles found in 50% or fewer populations (frequency of> = 5%). Mountain zebra National Park (MZNP), De Hoop Nature Reserve (DHNR) and

Kammanassie Nature Reserve (KNR) for the temporal periods 1999–2001 and 2015–2016.

https://doi.org/10.1371/journal.pone.0220331.g001
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also provided support for variation between the MZNP and KNR populations. For the 1999–

2001 time period (MZNP and KNR populations) FST comparisons indicated that variation

between the populations was 54.4% (p< 0.001) and variation within populations was 45.58%.

In the 2015–2016 time period variation was between MZNP and KNR populations was lower

(FST = 35.35%) with much higher variation within populations (64.65%).

Discussion

In this study, we provide a rare test of the genetic consequences of different conservation man-

agement strategies among populations of a large mammal. Management recommendations

from the BMP included (1) deliberate mixing of relict populations to maintain and improve

genetic diversity (excluding KNR and GNR), (2) re-enforcement of existing populations

prioritised over the establishment of new populations, (3) translocation of animals to other

protected areas, (3) acquisition of land adjacent to protected areas with CMZ, (4) alteration in

fire management in the habitat preferred by CMZ to increase availability of palatable grasses;

and (5) formation of conservancies with adjacent landowners. However, our data provides

Table 2. Estimated effective population sizes for the Mountain zebra National Park (MZNP) using the temporal method. The two analyses used were the Fc method

(Nei and Tajima, 1981) and the Fs method (Jorde and Ryman, 2007) using the Program NeEstmator ver. 2.1 (Do et al., 2014). Pcrit = the criterion for excluding rare alleles

if the frequency of rare alleles and less than the Pcrit value they are excluded, GI = the Generation interval, Ne = the estimated effective population size, Min and

Max = confidence interval values and CV = the Coefficient of variation.

MZNP Analysis with marker COR14 Analysis without marker COR14

Fc Fs Fc Fs

Pcrit = 0,05 Pcrit = 0,02 Pcrit = 0,05 Pcrit = 0,02 Pcrit = 0,05 Pcrit = 0,02 Pcrit = 0,05 Pcrit = 0,02

GI 1 1 1 1 1 1 1 1

Ne 3.2 3.4 3.2 3.2 3.1 3.3 3.1 3.2

CI 95% (Min—Max) 1.7–5.8 1.9–6 1.7–18.2 1.8–15.1 1.5–6.2 1.7–6.2 1.6–31.2 1.7–24.1

https://doi.org/10.1371/journal.pone.0220331.t002

Fig 2. Principal Component analysis for three Cape mountain zebra populations at two temporal periods. (a) 1999–2001 and (b) 2015–2016, for the populations

Mountain Zebra National Park (MZNP), De Hoop Nature Reserve (DHNR) and Kammanassie Nature Reserve (KNR).

https://doi.org/10.1371/journal.pone.0220331.g002
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support for a general reduction in genetic diversity (Ar and He) and loss of private alleles

among three key CMZ populations sampled at two time periods (1999–2001 and 2015–2016).

These results suggest that despite a high metapopulation growth rate, the CMZ has lost a sig-

nificant proportion of its genetic diversity within a single generation. At the population level,

all three reserves lost genetic diversity (Ar and He), with a statistically significant loss being

detected in DHNR. The loss of diversity in DHNR was compounded by decreases in Ho and

an increase in the inbreeding co-efficient (FIS). In contrast, non-significant increases in Ho

and a reduction in FIS were found in the relict populations MZNP and KNR. This slight

increase in observed heterozygosity may reflect a sampling effect in KNR, since only four sam-

ples were genotyped from this reserve in the 2015–2016 time period. It is more likely due to

several loci within these two populations reaching HWE, where Ho is not significantly different

from He. Both KNR and MZNP, therefore, did not display significant heterozygous excess.

The Ne for the MZNP was very low suggesting that continued isolation of this population

will result in further loss of genetic variation through drift. A small effective population size

could assist in explaining how genetic diversity was lost even though the population demo-

graphic census size increased. The effective size can be far smaller than the census size due to a

mating system that produces high variance in male and/or female reproductive success. How-

ever, bias in this case may be introduced by small sample size, limited time period between

Fig 3. Histogram of multilocus population assignment for three Cape mountain zebra populations. The optimal

number of clusters for the dataset was K = 2. Several models were run with very similar results; the admixture model is

displayed here. The Mountain zebra National Park (MZNP), De Hoop Nature Reserve (DHNR) and Kammanassie

Nature Reserve (KNR) for the two temporal periods, (a) 1999–2001 and (b) 2015–2016.

https://doi.org/10.1371/journal.pone.0220331.g003

Table 3. Results from Fst-based hierarchical analysis of molecular variance (AMOVA).

Source of variation Percentage Variation Fst P-value

Between 1999–2001 MZNP and KNR populations 54.42 0.544 0.00

Within 1999–2001 MZNP and KNR populations 45.58

Between 2015–2016 MZNP and KNR 35.35 0.354 0.00

Within 2015–2016 MZNP and KNR populations 64.65

https://doi.org/10.1371/journal.pone.0220331.t003
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collection of samples and number of microsatellite markers [33, 49]. Bias is unlikely to explain

entirely the low Ne estimates which are well below Ne = 50 and can lead to excessive inbreeding

and inbreeding depression [50]. Similar low Ne values have been reported in other species

including red deer (Cervus elaphus) from Sardinia and Mesola (Ne = 2 to 8) as a consequence

of bottlenecks and near-extinction [51].

Of additional concern is the complete loss of private alleles from all three sampled popula-

tion’s. This suggests rare and low frequency alleles have likely been lost genome wide. While a

loss in such population-specific alleles may not have an effect on overall heterozygosity (Norris

et al., 1999), it represents a loss of alleles potentially important for future adaptation and loss

the uniqueness of the KNR and MZNP stocks. This means that a proportion of the historical

diversity of the Cape mountain zebra, conserved through different conservation strategies and

present in 1999–2001 has already been lost in the present generation. The loss of unique alleles

in MZNP and KNR could also affect an individual or populations ability to adapt and cope

with future environmental change. Equally worrying is that the third stock population, inhab-

iting the Gamkaberg Nature Reserve (GNR), with a growth rate even lower than that of KNR,

could also be similarly affected.

The erosion of private alleles may have affected population genetic structure (differentia-

tion) of these populations. Model-based and model-free algorithms all document a decrease in

genetic differentiation between the KNR and MZNP stocks, which are now more similar to

each other than they were a generation ago. Furthermore, the allele frequencies for DHNR,

which were intermediate between its MZNP and KNR founding stocks in 1999–2001, are now

clearly more Kammanassie-like, with 90% of genotyped individuals assigned to the KNR clus-

ter (Fig 3). In addition, these results are supported by a reduction in FST (0.544 to 0.354). Such

a substantial shift or homogenization in allele frequencies within a single generation under-

scores the erosive effect of random genetic drift, even in populations that are expanding demo-

graphically, and threatens to undo much of the population benefits of a strategy to restore

gene flow.

Major changes in the number of private alleles could also be brought about by non-random

mating, where a handful of males dominate most of the breeding opportunities. This idea is

corroborated by empirical data showing that in 2005, the population was already male-biased,

with a deficit of females resulting in an excess of non-breeding males with limited reproductive

potential. Population growth at DHNR has declined from 6.6% in 1995–1999 to 4.5% in 1999–

2005 [52]. Thus, DHNR, a population that previously benefitted from admixture, now requires

urgent intervention to mitigate this loss. The lower growth rates of KNR and GNR has been

attributed to lower abundance of palatable grass species in those reserves [16,53]. The conser-

vative practice of managing these populations separately to protect their uniqueness has had

the opposite effect of loss of alleles that made them unique in the first place. Given the evidence

of genetic declines reported in this study, the erosive effects of genetic drift and non-random

mating can only be rectified through new introductions. Further suggested management prac-

tices to facilitate population growth and promote increased genetic diversity include establish-

ing studbooks for all newly founded mixed-stock populations, the use of fertility-control

methods to ensure equity in mating opportunities among males and females [54] and ensuring

range quality and hence overall body condition on new reserves identified as suitable for CMZ

populations. We therefore advocate changes to the conservation management of these impor-

tant populations, to try to arrest these worrying population trends, likely to cause further loss

of diversity, evolutionary potential and the onset of fitness related problems.

Results and the approach from this study could help design and implement management

and conservation strategies in other species with only a few small populations remaining. In

addition to census size, genetic monitoring of multiple metrics (e.g., heterozygosity, allelic
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uniqueness, and effective size) can provide early detection of loss of diversity even when a pop-

ulation is large or growing.
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